On MAXCUT in strictly supercritical random graphs, and coloring of random graphs and random tournaments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On MAXCUT in strictly supercritical random graphs, and coloring of random graphs and random tournaments

We use a theorem by Ding, Lubetzky and Peres describing the structure of the giant component of random graphs in the strictly supercritical regime, in order to determine the typical size of MAXCUT of G ∼ G (

متن کامل

Coloring Random Graphs

We present a randomized polynomial time algorithm that colors almost every graph on n vertices in n/(log2 n+ c √ log2 n) colors for every positive constant c.  1998 Published by Elsevier Science B.V. All rights reserved.

متن کامل

Coloring random graphs

We study the graph coloring problem over random graphs of finite average connectivity c. Given a number q of available colors, we find that graphs with low connectivity admit almost always a proper coloring, whereas graphs with high connectivity are uncolorable. Depending on q, we find the precise value of the critical average connectivity c(q). Moreover, we show that below c(q) there exists a ...

متن کامل

Equitable coloring of random graphs

An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of ...

متن کامل

List Coloring of Random and Pseudo-Random Graphs

The choice number of a graph G is the minimum integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). It is shown that the choice number of the random graph G(n, p(n)) is almost surely Θ( np(n) ln(np(n)) ) whenever 2 < np(n) ≤ n/2. A related result for pseudo-random graphs is prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Structures & Algorithms

سال: 2017

ISSN: 1042-9832

DOI: 10.1002/rsa.20751